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Abstract

Let G =(V, E) be a graph and d,, the degree of the vertex v. The zeroth-
order general Randié¢ index of G is defined as: Rg (G) = Z Vdg‘, where a
ve

is an arbitrary real number. In this paper, we characterize the unicycle
graphs of order n with the first three largest and the first three smallest
zeroth-order general Randié indices.

1. Introduction

Let G = (V(G), E(G)) denote a graph with V(G) as the set of vertices
and E(G) as the set of edges. Ng(v;) denotes the neighbors of v;. The
Randié index of G defined in [13] is

R(G) =

1
uveZE(G) Vdydy ’
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where d, = dg(v) denotes the degree of the vertex v in G. Randié
demonstrated that his index is well correlated with a variety of physic-
chemical properties of an alkane. The index R(G) has become one of the

most popular molecular descriptors. The interesting reader is referred to

[1-3, 11-13]. Eventually, countless research papers are devoted. The
zeroth-order Randié¢ index RO(G) of G defined by Kier and Hall [8] is

R°(G) = z L Pavlovié [11] gave the unique graph with largest

veV(G) \/Z

value of RO(G). In [5], Lielal investigated the same problem for the
topological index M;(G), also known as the first Zagreb index [14],

which is defined as M;(G) = ZveV(G)dvz' Li and Zheng [10] defined the

zeroth-order general Randié¢ index of a graph G as :

R)G)= . df,
veV(Q)

. . 1 1
where o is a real number. For o being one of m, - m, —, — —, where
m m

m > 2 is an integer, Li and Zhao [9] characterized the trees with the first
three largest and smallest zeroth-order general Randié¢ index; Wang and
Deng [15] characterized the unicycle graphs with the maximum zeroth-

order General Randié¢ index. Hu et al. [6] characterized the molecular (n,

m)-graphs with the smallest and greatest Rg. Hua and Deng [7]

characterized the unicycle graphs with the smallest and greatest Rg.

In this paper, we investigate the zeroth-order general Randié¢ index
for the unicycle graphs. All unicycle graphs with the first three largest
and the first three smallest zeroth-order general Randié index are

characterized.

All graphs considered here are both finite and simple. We denote the

star, path and cycle of order n by S,,, P, and C,,, respectively. Let G =

no

(V, E) be an unicycle graph of order n with its unique cycle C, = vjvy
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vy of length r, Ty, Ty, -+, Tp(0 < k < r) are the all nontrivial
components (they are all nontrivial trees) of G - E(C,), u; is the

common vertex of 7; and C,,i =1, 2, ---, k. Such an unicycle graph is
denoted by C/1"2 Yk (T, Ty, -, Ty ). Let n(T;) = I; +1 be the number
of verticesintree T, then I =n—-r =04 +ly + I3 +---+ .

Specially, uy, ug, -+, up are the centers of Sy .y, S;,.1, -, Sy 1,
respectively, in

Ui, U9, U
Gy = G2 2 (S 1 Siyi1s s Spe1)

and uy, ug, -+, u, are the end-vertices of Py .y, Py1, 0, By,

respectively, in

Uy, ug, -+ up
Gy = G2 ’”(P11+1,P12+1,---,Plk+1).

We also denote C3'(S, 5) by S, +e Ci' (P, 5) is simplified by
C3(Pp-2).

D(G) = [d;, dg, -+, d,;] denotes the degree sequence of a graph G,
and D(G) =[x, x52, -+, x?i e x)t, x?i means that G has q; vertices

of degree x;,1 =1, 2, ---, .

Undefined notations and terminology will conform to those in [9].

2. The Unicycle Graphs with the First Three Largest (Smallest)
Zeroth-Order General Randié Indices for o > 1 or
a<0(0<a<l)

We first introduce three transfer operation.

Transfer operation A. Let G be an unicycle graph of order n. If
there are vertices v and v such that d, = p>1,d, =¢ >1, p <gq, and

Uy, Ug, -+, up are the neighbors of u. Then G is changed into G’ after
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the transfer operation A, where G' = G - {uu;, uug, -, uuy } + {vuy,

vug, -, vuy b, 1 < k < p. As shown in Figure 1.

Figure 1. Transfer operation A.
Lemma 2.1. For the two graphs G and G' above, we have
(i) R2(G") > RY(G) for o > 1 or o < 0;
(i) RY(G") < RY(G) for 0 < a < 1.
Proof. By the definition of RY(G), we have
A = Ry(G')- R(G)

=[(p-k)" +(qg+R)*]-[p* +q%]

[(g + k)" —q¢*]-[p* - (p - k)]
= o k(£ -0,

where ne(p-k, p),Ee(q, g+k).E>n since p<q. Then A>0
when o >1 or a < 0; A <0 when 0 < o < 1. The proof of Lemma 2.1 is
completed.

Remark. Repeating operation A, any unicycle graph of order n can
be changed into an unicycle graph which has at most one vertex with

degree greater than 2 such as CJ1 (7} ).
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Transfer operation B. Let G be an unicycle graph of order n, uv is
an edge of G. dg(u) = p = 3. Ng(v) is the neighbors of v, and Ng(v) -

{u} = {wq, wg, -+, w;}. Then G is changed into G" first and, then into G’

after operation B, where G' = G - {vw;, vwgy, -+, vw; } + {uw;, uwy, -+,
uw; }, G" =G - {vwy, vws, -+, vw; } + {uwg, uws, -+, uw; }. As shown in
Figure 2.

m W,
H[ ,
\_// (Y!

Figure 2. Transfer operation B.
Lemma 2.2 . For the three graphs G, G' and G" above, we have
(i) R2(G")> R%(G") > RY(G) for a > 1 or o < 0;
(i) R2(G') < RY(G") < RY(G) for 0 < a < 1.
Proof. If p > [ +1, then

A = Ry(G") - Ry(G)
=[lp+1-1)" +2%]-[p* + (1 +1)"]

[(p+1-1)% - p*]-[+1)* - 2%]

al -1)(E* ™ -0,

where ne (2,1+1),&e(p, p+1-1).

If p <l+1, then
A = Ry(G") - Ry(G)

=[lp+1-1)%+2%]-[p* + [ +1)?]
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[(p+1-D% - (+1)"]-[p* - 2%]

a(p - 2)(g*7 -,

where ne (2, p), Ee(l+1, p+1-1).

And £ >1n. A>0 when aa >1 or a < 0; A <0 when 0 < a <1. The

proof of Lemma 2.2 is completed.

Remark. Repeating the operation B, any unicycle graph G =
Cyv 2 Uk (Ty, Ty, -+, T) can be changed into CyV"2"""k(S;, S,
e, 8y

So, an wunicycle graph G = Cf1“2 Yk (Ty, Ty, -+, T},) can be
changed into G’ = C}1(S,,_,,; ) after the operations B and A.

Transfer operation C. Let G be an unicycle graph of order n.
C, = ujug -+ u,u; is the unique cycle of G. e = xy is a pedant edge of G,
and d, =1,d, >2. Then G is changed into G’ after the transfer
operation C, where G' = G - {xy, wju; 1} +{u;y, uj;1y}. As shown in

Figure 3.

Wit

Figure 3. Transfer operation C.
Lemma 2.3. For the two graphs G and G' above, we have
() RY(G') < RY(G) for a >1 or a < 0;

() RY(G'") = RY(G) for 0 < a <1,
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with the equality if and only if d, = 2.
Proof. By the definition of R(G), we have
A = RG(G') - Ry(G)

= [(dy =1)* +2%]-[dy +1%]

[2% =1%]-[dy - (dy -1)%]

a‘(&a_l - n(x—l )7

where nme(d, -1,d,),Ee(1,2).&<mn since d, >2.A<0 when
oa>1 or o <0;A>0 when 0 < a <1. The proof of Lemma 2.3 is

completed.

From Lemma 2.3, we know that RO(C!(S,_,,1)), 3 <r < n, is the

monotone function of r:

If 3<r <r'<n,then

@ Ro(Cr1(Sp-rs1)) > Ba(CF1(Sy—in)) for o> 1 or o < 0;
(i) RG(CY(Sn_pi1)) < RQ(CH(Sp_pr1)) for 0 < o < 1.
The following result is immediate from the Lemmas above.

Theorem 2.4 ([7]). Among all unicycle graphs of order n,

(1) G = C3(S,,_9) is the unique unicycle graph with the largest zeroth-

order general Randic index for o > 1 or a < 0;

(1) G = C5(S,,_9) is the unique unicycle graph with the smallest

zeroth-order general Randié¢ index for 0 < oo < 1.

In the following, we consider the unicycle graphs with the second and

the third largest zeroth-order general Randié index for o > 1 or a < 0.
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For any unicycle graph G = C/V“2 Y (Ty, Ty, ---, T}), by the
transfer operation B, there is an unicycle graph G' = C;V"2 """ (S; 4,
Siy+15 > Sy, +1) such that

() R2(G') = R%(G) for a > 1 or a < 0;

(i) RY(G") < RY(G) for 0 < a < 1.
Furthermore, if & > 4, then, by the transfer operations A and C, there is
an unicycle graph G" = Cg“2*(Sy 11, Sy .1, Sy41) such that

() RY(G") = RY(G') for o > 1 or o < 0;

(1) RO(G") < RY(G") for 0 < a < 1.
Let
G ={C" (S 11, Sy, Syl 21,021,284 +1p + 13 =n -3},
Go ={CHV"2(T, Ty)|3<r<4,l; 21,i=1,2 4 +ly =n-r},
G, =GN (T)I8<r<b5 L =n-r}.

By the transfer operation A, we know that

(1) the largest value of zeroth-order general Randié indices of the

unicycle graphs in G; is not more than the third largest value of zeroth-
order general Randié¢ indices of all unicycle graphs for a >1 or a < 0,

and the smallest value of zeroth-order general Randié¢ indices of the

unicycle graphs in G; is not less than the third smallest value of zeroth-

order general Randié indices of all unicycle graphs for 0 < a < 1;

(11) the largest value of zeroth-order general Randié indices of the

unicycle graphsin G5 is not more than the second largest value of zeroth-

order general Randié indices of all unicycle graphs for a > 1 or a < 0,
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and the smallest value of zeroth-order general Randié indices of the

unicycle graphs in G9 is not less than the second smallest value of

zeroth-order general Randié indices of all unicycle graphs for 0 < a < 1.

Therefore, in order to find the unicycle graph with the second and the
third largest (smallest) zeroth-order general Randié¢ index for o > 1 or

a <0 (0 <a <1), weonly need to find

(1) the unicycle graph with the largest (smallest) zeroth-order general

Randié indexin G; for o > 1 or a < 0 (0 < a < 1); and

(i1) the unicycle graphs with the first two largest (smallest) zeroth-
order general Randié¢ index in Gy for o > 1 or o < 0 (0 < o < 1); and

(1i1) the unicycle graph with the first three largest (smallest) zeroth-
order general Randi¢ index in G, fora >1 or a <0 (0 <o <1) and,

then compare them in turn.
From the transfer operation A, it is immediate that

Lemma 2.5. (i) The unicycle graph in G with the largest (smallest)

zeroth-order general Randi¢ index for o >1 or a <0 (0 <a<1) is
Gy = C3V"™(8S,, Sy, Syg).

(11) The unicycle graph in Go with the largest (smallest) zeroth-order
general Randié index for oo >1 or a < 0 (0 < o < 1) is Gjg = C37"2(S;,
Sp-3)-

(ii1) The unicycle graph in G, with the largest (smallest) zeroth-order

general Randié¢ index for o >1 or a <0 (0 < a <1) is Gy = C3(S,,_9),

it is also the unicycle graph with the largest (smallest) zeroth-order
general Randié index for o >1 or a < 0 (0 < a < 1) among all unicycle

graphs of order n.
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Lemma 2.6. The unicycle graph Gy with the second largest (smallest)
zeroth-order general Randi¢ index for o >1 or a <0 (0<a<1) is
Gy = Cé”’”?“(Sg, Sp_4).

Proof. Let G = C,Z.ll’u2 (Tl’ T2)E g2, 3<r< 4, G# Céﬂ,l@ (Sz, Sn_3 )

Case 1.If r = 3, then {T}, Ty} # {Sy, S,,_3}.

(1) {Tl’ T2} = {Sll+1’ Slerl}’ where ll > 2, l2 > 2, ll + l2 =n-2,
and u;, ug are the centers of 77 and 75, respectively. By the transfer

operation A, we have
(1) RY(G) < RY(Gy;) for o > 1 or a < 0;
(i) RY(G)= RY(Gyy) for 0 < o <1,
where Gy; = C5"2(S3, S,_4 ), as shown in Figure 4.
(2) Otherwise, by the transfer operations A and B, we have
() RY(G) < RY(G') for a > 1 or a < 0;
(i) RY(G)= RY(G') for 0 < o <1,
where G' = Gy1 or Gy9, as shown in Figure 4.

Case 2. If r = 4, then by the transfer operations A and B, we have
() RY(G) < RY(G') for a > 1 or o < O;
(i) RY(G)= RY(G') for 0 < o <1,

where G’ = Gy3 or Gy4, as shown in Figure 4. Continuing the transfer

operation C, we have
() R2(G') < R%(Gy;) for a > 1 or a < O;

(i) RO(G') = RY(Gyy) for 0 < o < 1.
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Finally, comparing the zeroth-order general Randié¢ indices of G;1, and

G19 we have
(i) RY(Gy9) < RY(Gyy) for a > 1 or o < 0;

(i) RO(Gyg) > R(Gyy) for 0 < o < 1.
The proof of Lemma 2.6 is completed.

Similarly, the unicycle graph in G 4 with the second largest (smallest)

zeroth-order general Randié¢ index for o >1 or a <0 (0 < a <1) is Gy

and G;. The unicycle graph in g, with the third largest (smallest)
zeroth-order general Randié index for a >1 or o <0 (0 < o < 1) is one
of G4, G5 and Gg. Comparing the zeroth-order general Randi¢ indices of
G4, G5 and Gg, we have

Lemma 2.7. (i) The unicycle graph in g, with the second largest
(smallest) zeroth-order general Randi¢ index for o >1 or a<0
(0 <a <1)is Gy or Gy;

(11) The unicycle graph in G 3 with the third largest (smallest) zeroth-

order general Randié¢ index for oo >1 or o < 0 (0 < a < 1) is Gs.

Comparing the zeroth-order general Randié¢ indices of Ggs, G, Gy,
Gyo and Gq1, we have
Theorem 2.8. Among all unicycle graphs of order n,

(1) The unicycle graph with the second largest (smallest) zeroth-order
general Randié index for oo > 1 or o < 0 (0 < a < 1) is Gyp;

(1) The unicycle graph with the third largest (smallest) zeroth-order

general Randié index for oo >1 or a <0 (0 < a < 1) is G5 or Gy.
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Figure 4.
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3. The Unicycle Graphs with the First Three Smallest (Largest)
Values of Zeroth-Order Randié Index for o > 1 or

a<0(0<ac<l)

For convenience, we introduce some new transfer operations.

2l
T

Figure 5. Transfer operation D.

Transfer operation D. Let G = C/V 2 U (T, ... T, -, T}),
k > 1. If T; is not a path, or 7; is a path and u; is not the end-vertex of

the path, then G can be changed into G' = C;"" """ “k(Ty, -, Py 4,

-+, T}, ) after the transfer operation D, where [; +1 = n(T}) and u; is the
end-vertex of P, as shown in Figure 5.

Lemma 3.1. For the two graphs G and G' above, we have
(i) RY(G") < RY(G) for o.>1 or o < 0;

(i) RY(G') > RY(G) for 0 < o < 1.
Proof. By the definition of R2(G), we have
A = RY(G) - RUG)

= R(T;) - R(Pya) +[(p + 2)" - 8% ]~ [p* -1%]



208 HONGZHUAN WANG et al.
= RQ(T}) - RY(Py.q) +[(p +2)* - p*]-[3% —1%]
= RY(T;) = RG(Pyyp) + 20(8%7" =),

where & € (p, p+2),me(l,3)(or £ (3, p+2),ne(, p)).

Let &y = f(T}) = f(Pyi1), Ag = (%7 —n*7).

If « >1 or a <0, then Ay >0; and A; > 0 from [9]. And at least
one of the equalities strictly holds. So, A > 0.

If 0 <a <1, then Ay < 0; and A; <0 from [9]. And at least one of
the inequalities strictly holds. So, A < 0.

The proof of Lemma 3.1 is completed.

Remark. Repeating the operations D, any unicycle graph

G = C/v 2> Yk (T, Ty, +++, T}, ) can be changed into
C;lfl’uz’myuk(Pllﬁ—l’ Pl2+1’ T Plk+1 )

For any unicycle graph G = C/V¥“2 Uk (T}, Ty, ---, T}, ), we can see from

Lemma 3.1 that

@) RQ(G) 2 RY(Cyv2 ¥ (Py ,q, Pyq, -+, Pyig)) for a>1 or

o < 0;
() RY(G) < RQ(Cy1 "2 "k (Py 4y, Pyyyy, -+, Pyr)) for 0 < a < 1.
And the equality holds if and only if

Uy, ug, - Up
G=Cnm P(Pll+1’Pl2+1’""Plk+1)'

Transfer operation F. Let G = C;yV“2 """ (Py .1, Py, q, -+, Py 1)

If £ > 1, then G can be changed into

Uy, ey U
G' =Gt k 1(Pll+17 P12+17 ) Plk_1+lk+1)-
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Lemma 3.2. For the two graphs G and G' above, we have
() R2(G") < RY(G) for 0. > 1 or o < 0;
() R2(G') > RY(G) for 0 < o < 1.
Proof. By the definition of RY(G), we have
A = RG(G") - Ry(G)

=[2% +2%]-[3* +1%]

=[2% -1%]-[3% - 27]

= a(g® -,

where £ € (1,2),M€(2,3). And £ <n, A<O for a>1o0r a<0,A>0

for 0 < a < 1. The proof of Lemma 3.2 is completed.
Remark. Repeating the operation F, any unicycle graph G =
Cyv 2% (Py 1, Ppy1s > Py11) can be changed into Cy1(P,_,1), as

shown in Figure 6.

Therefore, any unicycle graph G = C/1%2 "%k (T}, Ty, -, T}, ) can be

changed into C;*(P,_,,;) after the operations D and F.

Pn, —r+1

- — —»

Figure 6. C;1(P,_,.1 ).
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Lemma 3.3.If 3 < r < n, then

() RO(CY(P,_,.1)) > RY(C,) for o >1 or a < 0;

(i) RG(Cy (Pyri1)) < Ba(Cy) for 0 < o < 1.

Proof. If 3 <r < n, then the degree sequence of C;1(P,_,,;) is

[1, 2, -+, 2---, 3]. The degree sequence of C, is [2, 2, ---, 2---, 2]. By the

definition of RJ(G), we have
A = Ro(C1 (Pa-ri1)) — Ba(Cp)
=[1% +3%]-[2* + 2¢]
=[3% -2%]-[2% -17]

= a(g*! —n*h),
where £ e€(2,3),nme(1,2). And A>0 for a« >1 or a <0, A <0 for
0 < a < 1. The proof of Lemma 3.3 is completed.
From Lemmas 3.1 and 3.2, the following result is immediate.
Theorem 3.4. Among all unicycle graphs,
(1) C,, is the unique unicycle graph with the smallest (largest) zeroth-

order general Randié index for oo >1 or oo < 0 (0 < a < 1);

(11) the unicycle graphs with the second smallest (largest) zeroth-order

general Randi¢ index for oa>1 or a<0(0<a<1l) are
C (Py_r41), 3 <1 < n-—1, their degree sequences are [1, 2, ---, 2+, 3].
In the following, we consider the unicycle graph with third smallest

(largest) zeroth-order general Randi¢ index for o >1 or a <O
0<a<1).
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Let

.7:1 = {Crl.tl’u2(Pll+1, P12+1)|l1’ l2 > 1, ll +Z2 =n-r,r > 3}
Fo ={CA(T1)|3<r<n-1}.

For any unicycle G = C/v¥2 Yk (Ty, ... | T}, ---, T},), if k > 3, then by
the operations D and F, there is G' € F; such that

() R2(G)> RYG) for o > 1 or o < 0;
(i) R2(G) < RY(G') for 0 < o < 1.
Similarly, for any unicycle graph G € F, thereis G' € Fy such that
() R(G)> RYG") for o > 1 or o < 0;
(i) R2(G) < RY(G') for 0 < o < 1.

Therefore, the smallest value of zeroth-order general Randié¢ indices of
the unicycle graphs in Fj is not less than the third smallest value of

zeroth-order general Randié¢ indices of all unicycle graphs for oo > 1 or
o < 0; and the largest value of zeroth-order general Randié indices of the
unicycle graphs in 77 is not more than the third largest value of zeroth-

order general Randié indices of all unicycle graphs for 0 < a < 1.

In order to find the unicycle graph with the third smallest (largest)
zeroth-order general Randi¢ index for a >1 or a <0 (0 < a <1), we

only need to find
(1) the unicycle graph with the smallest (largest) zeroth-order general
Randié index in F; for o > 1 or a <0 (0 < o < 1); and

(1) the unicycle graphs with the second smallest (largest) zeroth-
order general Randié¢ index in Fy for o >1 or a <0 (0 < a < 1) and,

then compare them in turn.
Note that the degree sequences of graphs in F; are
[1,1,2, -, 2, 3, 3], and their zeroth-order general Randié indices are the

same value:
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RYG)=2+2%(n-4)+2-3%

So, we only need to find the unicycle graphs with the second smallest

(largest) zeroth-order general Randié¢ index in Fy for a >1 or a <0

0<a<1).

Let D(G) = [d;, dg, -*-, d,, ] be the degree sequence of unicycle graph
G with order n, where d; > d; + 2. G' is obtained by replacing (d;, d;)
with (d; -1, d; +1) in D(G), i.e.,

DG =[dy, -+, diy, di =1, djy, o, djg, dj +1,djg, o, dy ]
Lemma 3.4 ([9]). For the two graphs G and G' above, we have
(i) RY(G) > RY(G') for a > 1 or a < 0;

(i) R2(G) < RY(G") for 0 < o < 1.

Lemma 3.5. The graphs in Fo with the degree sequence D(G) =
[1,1,2,--,2,3,3] are the unicycle graphs with the second smallest
(largest) zeroth-order general Randi¢ index in Fo for a >1 or a <0

0<a<1).

Proof. Let G = C}1(T}) be the unicycle graph in Fy with the second
smallest (largest) for o >1 or a <0 (0 <a <1). Sincer<n-1, G
must have at least one vertex with degree more than 2.

If Fy is the unicycle graph with the smallest (largest) zeroth-order
general Randié¢ index in Fy for o >1 or o <0 (0 < a <1), then, by

Theorem 3.1, the degree sequence of Fy is [1, 2, -+, 2, 3].

Therefore, G must have at least two vertices with degree more than

If the degree sequence of G is not [1,1, 2, ---, 2, 3, 3], then, by
Lemma 3.4, there is an wunicycle graph G'e F3 such that
DG)=[,1,2 2 3, 3], and
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() R2(G) > R%(G") > RY(Fy) for o > 1 or a < 0;
(i) R2(G) < RY(G") < RY(Fy) for 0 < a < 1.

This contradicts that G is the unicycle graph in Fy with the second
smallest (largest) for a > 1 or a < 0 (0 < o < 1). So, the degree sequence

of Gis D(G) = [1, 1, 2, -+, 2, 3, 3].

Since the degree sequence of the graph in F; is [1, 1, 2, ---, 2, 3, 3],

combining Lemma 3.5 and the above, we have

Theorem 3.2. Among all the unicycle graphs of order n, the unicycle
graphs with the third smallest (largest) zeroth-order general Randié index
for a >1 or a <0 (0 < a < 1) are the graphs whose degree sequences are

[1, 12, -, 2 3, 3].
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