UNICYCLE GRAPHS WITH THE FIRST THREE EXTREMAL ZEROTH-ORDER GENERAL RANDIĆ INDICES

HONGZHUAN WANG, DONGDONG WANG and SHU WEN

Department of Computing Science Huaiyin Institute of Technology Huaian, Jiangsu 223000 P. R. China e-mail: hongzhuanwang@gmail.com

Abstract

Let G = (V, E) be a graph and d_v the degree of the vertex v. The zerothorder general Randić index of G is defined as: $R^0_{\alpha}(G) = \sum_{v \in V} d^{\alpha}_v$, where α is an arbitrary real number. In this paper, we characterize the unicycle graphs of order n with the first three largest and the first three smallest zeroth-order general Randić indices.

1. Introduction

Let G = (V(G), E(G)) denote a graph with V(G) as the set of vertices and E(G) as the set of edges. $N_G(v_i)$ denotes the neighbors of v_i . The Randić index of G defined in [13] is

$$R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u d_v}},$$

© 2009 Scientific Advances Publishers

²⁰⁰⁰ Mathematics Subject Classification: 05C75, 05C90.

Keywords and phrases: unicycle graph, zeroth-order general Randić index, degree sequence. Received September 10, 2008

where $d_v = d_G(v)$ denotes the degree of the vertex v in G. Randić demonstrated that his index is well correlated with a variety of physicchemical properties of an alkane. The index R(G) has become one of the most popular molecular descriptors. The interesting reader is referred to [1-3, 11-13]. Eventually, countless research papers are devoted. The zeroth-order Randić index $R^0(G)$ of G defined by Kier and Hall [8] is $R^0(G) = \sum_{v \in V(G)} \frac{1}{\sqrt{d_v}}$. Pavlović [11] gave the unique graph with largest

value of $R^0(G)$. In [5], Lielal investigated the same problem for the topological index $M_1(G)$, also known as the first Zagreb index [14], which is defined as $M_1(G) = \sum_{v \in V(G)} d_v^2$. Li and Zheng [10] defined the zeroth-order general Randić index of a graph G as :

$$R^0_{\alpha}(G) = \sum_{v \in V(G)} d^{\alpha}_v,$$

where α is a real number. For α being one of $m, -m, \frac{1}{m}, -\frac{1}{m}$, where $m \geq 2$ is an integer, Li and Zhao [9] characterized the trees with the first three largest and smallest zeroth-order general Randić index; Wang and Deng [15] characterized the unicycle graphs with the maximum zeroth-order General Randić index. Hu et al. [6] characterized the molecular (n, m)-graphs with the smallest and greatest R_{α}^{0} . Hua and Deng [7] characterized the unicycle graphs with the smallest and greatest R_{α}^{0} .

In this paper, we investigate the zeroth-order general Randić index for the unicycle graphs. All unicycle graphs with the first three largest and the first three smallest zeroth-order general Randić index are characterized.

All graphs considered here are both finite and simple. We denote the star, path and cycle of order n by S_n , P_n and C_n , respectively. Let G = (V, E) be an unicycle graph of order n with its unique cycle $C_r = v_1v_2$

 $\cdots v_r v_1$ of length $r, T_1, T_2, \cdots, T_k (0 \le k \le r)$ are the all nontrivial components (they are all nontrivial trees) of $G - E(C_r)$, u_i is the common vertex of T_i and C_r , $i = 1, 2, \cdots, k$. Such an unicycle graph is denoted by $C_r^{u_1, u_2, \cdots, u_k}(T_1, T_2, \cdots, T_k)$. Let $n(T_i) = l_i + 1$ be the number of vertices in tree T_i , then $l = n - r = l_1 + l_2 + l_3 + \cdots + l_k$.

Specially, u_1, u_2, \cdots, u_k are the centers of $S_{l_1+1}, S_{l_2+1}, \cdots, S_{l_k+1}$, respectively, in

$$G_1 = C_r^{u_1, u_2, \cdots, u_k} (S_{l_1+1}, S_{l_2+1}, \cdots, S_{l_k+1})$$

and $u_1,\,u_2,\,\cdots,\,u_k$ are the end-vertices of $P_{l_1+1},\,P_{l_2+1},\,\cdots,\,P_{l_k+1},$ respectively, in

$$G_2 = C_r^{u_1, u_2, \cdots, u_k} (P_{l_1+1}, P_{l_2+1}, \cdots, P_{l_k+1})$$

We also denote $C_3^{u_1}(S_{n-2})$ by $S_n + e. C_3^{u_1}(P_{n-2})$ is simplified by $C_3(P_{n-2}).$

 $D(G) = [d_1, d_2, \dots, d_n]$ denotes the degree sequence of a graph G, and $D(G) = [x_1^{a_1}, x_2^{a_2}, \dots, x_i^{a_i} \dots, x_t^{a_t}], x_i^{a_i}$ means that G has a_i vertices of degree $x_i, i = 1, 2, \dots, t$.

Undefined notations and terminology will conform to those in [9].

2. The Unicycle Graphs with the First Three Largest (Smallest) Zeroth-Order General Randić Indices for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$)

We first introduce three transfer operation.

Transfer operation *A*. Let *G* be an unicycle graph of order *n*. If there are vertices *u* and *v* such that $d_u = p > 1$, $d_v = q > 1$, $p \le q$, and u_1, u_2, \dots, u_k are the neighbors of *u*. Then *G* is changed into *G'* after

the transfer operation A, where $G' = G - \{uu_1, uu_2, \dots, uu_k\} + \{vu_1, vu_2, \dots, vu_k\}, 1 \le k \le p$. As shown in Figure 1.

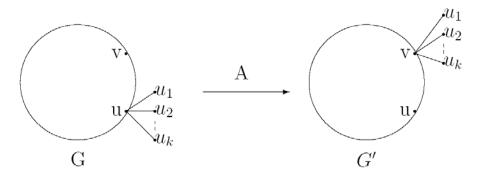


Figure 1. Transfer operation A.

Lemma 2.1. For the two graphs G and G' above, we have

- (i) $R^0_{\alpha}(G') > R^0_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$;
- (ii) $R^0_{\alpha}(G') < R^0_{\alpha}(G)$ for $0 < \alpha < 1$.

Proof. By the definition of $R^0_{\alpha}(G)$, we have

$$\begin{split} \Delta &= R^{0}_{\alpha}(G') - R^{0}_{\alpha}(G) \\ &= \left[(p-k)^{\alpha} + (q+k)^{\alpha} \right] - \left[p^{\alpha} + q^{\alpha} \right] \\ &= \left[(q+k)^{\alpha} - q^{\alpha} \right] - \left[p^{\alpha} - (p-k)^{\alpha} \right] \\ &= \alpha \cdot k(\xi^{\alpha-1} - \eta^{\alpha-1}), \end{split}$$

where $\eta \in (p - k, p)$, $\xi \in (q, q + k)$. $\xi > \eta$ since $p \le q$. Then $\Delta > 0$ when $\alpha > 1$ or $\alpha < 0$; $\Delta < 0$ when $0 < \alpha < 1$. The proof of Lemma 2.1 is completed.

Remark. Repeating operation A, any unicycle graph of order n can be changed into an unicycle graph which has at most one vertex with degree greater than 2 such as $C_r^{u_1}(T_1)$.

Transfer operation *B.* Let *G* be an unicycle graph of order *n*, *uv* is an edge of *G*. $d_G(u) = p \ge 3$. $N_G(v)$ is the neighbors of *v*, and $N_G(v) - \{u\} = \{w_1, w_2, \dots, w_l\}$. Then *G* is changed into *G*" first and, then into *G*' after operation *B*, where $G' = G - \{vw_1, vw_2, \dots, vw_l\} + \{uw_1, uw_2, \dots, uw_l\}$, $G'' = G - \{vw_2, vw_3, \dots, vw_l\} + \{uw_2, uw_3, \dots, uw_l\}$. As shown in Figure 2.

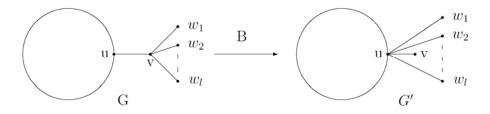


Figure 2. Transfer operation B.

Lemma 2.2. For the three graphs G, G' and G'' above, we have

- (i) R⁰_α(G') > R⁰_α(G") > R⁰_α(G) for α > 1 or α < 0;
 (ii) R⁰_α(G') < R⁰_α(G") < R⁰_α(G) for 0 < α < 1.
- **Proof.** If $p \ge l + 1$, then

$$\begin{split} \Delta &= R^{0}_{\alpha}(G'') - R^{0}_{\alpha}(G) \\ &= \left[(p+l-1)^{\alpha} + 2^{\alpha} \right] - \left[p^{\alpha} + (l+1)^{\alpha} \right] \\ &= \left[(p+l-1)^{\alpha} - p^{\alpha} \right] - \left[(l+1)^{\alpha} - 2^{\alpha} \right] \\ &= \alpha (l-1) (\xi^{\alpha-1} - \eta^{\alpha-1}), \end{split}$$

where $\eta \in (2, l+1), \xi \in (p, p+l-1).$

If $p \leq l+1$, then

$$\begin{aligned} \Delta &= R^{0}_{\alpha}(G'') - R^{0}_{\alpha}(G) \\ &= \left[(p+l-1)^{\alpha} + 2^{\alpha} \right] - \left[p^{\alpha} + (l+1)^{\alpha} \right] \end{aligned}$$

199

$$= [(p+l-1)^{\alpha} - (l+1)^{\alpha}] - [p^{\alpha} - 2^{\alpha}]$$
$$= \alpha(p-2)(\xi^{\alpha-1} - \eta^{\alpha-1}),$$

where $\eta \in (2, p), \xi \in (l+1, p+l-1).$

And $\xi > \eta$. $\Delta > 0$ when $\alpha > 1$ or $\alpha < 0$; $\Delta < 0$ when $0 < \alpha < 1$. The proof of Lemma 2.2 is completed.

Remark. Repeating the operation *B*, any unicycle graph $G = C_r^{u_1, u_2, \dots, u_k}(T_1, T_2, \dots, T_k)$ can be changed into $C_r^{u_1, u_2, \dots, u_k}(S_{l_1}, S_{l_2}, \dots, S_{l_k})$.

So, an unicycle graph $G = C_r^{u_1, u_2, \cdots, u_k}(T_1, T_2, \cdots, T_k)$ can be changed into $G' = C_r^{u_1}(S_{n-r+1})$ after the operations B and A.

Transfer operation *C.* Let *G* be an unicycle graph of order *n*. $C_r = u_1 u_2 \cdots u_r u_1$ is the unique cycle of *G*. e = xy is a pedant edge of *G*, and $d_y = 1, d_x \ge 2$. Then *G* is changed into *G'* after the transfer operation *C*, where $G' = G - \{xy, u_i u_{i+1}\} + \{u_i y, u_{i+1} y\}$. As shown in Figure 3.

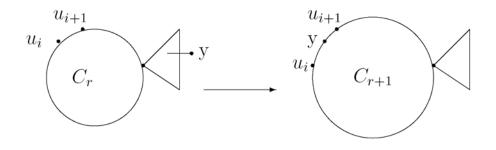


Figure 3. Transfer operation C.

Lemma 2.3. For the two graphs G and G' above, we have

(i)
$$R^0_{\alpha}(G') \leq R^0_{\alpha}(G)$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^0_{\alpha}(G') \ge R^0_{\alpha}(G)$$
 for $0 < \alpha < 1$,

200

with the equality if and only if $d_x = 2$.

Proof. By the definition of $R^0_{\alpha}(G)$, we have

$$\begin{split} \Delta &= R^{0}_{\alpha}(G') - R^{0}_{\alpha}(G) \\ &= \left[(d_{x} - 1)^{\alpha} + 2^{\alpha} \right] - \left[d^{\alpha}_{x} + 1^{\alpha} \right] \\ &= \left[2^{\alpha} - 1^{\alpha} \right] - \left[d^{\alpha}_{x} - (d_{x} - 1)^{\alpha} \right] \\ &= \alpha (\xi^{\alpha - 1} - \eta^{\alpha - 1}), \end{split}$$

where $\eta \in (d_x - 1, d_x)$, $\xi \in (1, 2)$. $\xi < \eta$ since $d_x \ge 2$. $\Delta < 0$ when $\alpha > 1$ or $\alpha < 0$; $\Delta > 0$ when $0 < \alpha < 1$. The proof of Lemma 2.3 is completed.

From Lemma 2.3, we know that $R^0_{\alpha}(C^{u_1}_r(S_{n-r+1}))$, $3 \le r \le n$, is the monotone function of r:

If $3 \le r \le r' \le n$, then (i) $R^0_{\alpha}(C^{u_1}_r(S_{n-r+1})) > R^0_{\alpha}(C^{u_1}_r(S_{n-r'+1}))$ for $\alpha > 1$ or $\alpha < 0$; (ii) $R^0_{\alpha}(C^{u_1}_r(S_{n-r+1})) < R^0_{\alpha}(C^{u_1}_{r'}(S_{n-r'+1}))$ for $0 < \alpha < 1$.

The following result is immediate from the Lemmas above.

Theorem 2.4 ([7]). Among all unicycle graphs of order n,

(i) $G = C_3(S_{n-2})$ is the unique unicycle graph with the largest zerothorder general Randić index for $\alpha > 1$ or $\alpha < 0$;

(ii) $G = C_3(S_{n-2})$ is the unique unicycle graph with the smallest zeroth-order general Randić index for $0 < \alpha < 1$.

In the following, we consider the unicycle graphs with the second and the third largest zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$.

For any unicycle graph $G = C_r^{u_1, u_2, \dots, u_k}(T_1, T_2, \dots, T_k)$, by the transfer operation *B*, there is an unicycle graph $G' = C_r^{u_1, u_2, \dots, u_k}(S_{l_1+1}, S_{l_2+1}, \dots, S_{l_k+1})$ such that

Furthermore, if $k \ge 4$, then, by the transfer operations A and C, there is an unicycle graph $G'' = C_3^{u_1, u_2, u_3}(S_{l'_1+1}, S_{l'_2+1}, S_{l'_3+1})$ such that

Let

$$\begin{split} \mathcal{G}_1 &= \{C_3^{u_1,\,u_2,\,u_3}(S_{l_1+1},\,S_{l_2+1},\,S_{l_3+1}) | l_i \geq 1, \, i=1,\,2,\,3,\,l_1+l_2+l_3=n-3\}, \\ \mathcal{G}_2 &= \{C_r^{u_1,\,u_2}(T_1,\,T_2) | 3 \leq r \leq 4,\,l_i \geq 1,\, i=1,\,2,\,l_1+l_2=n-r\}, \\ \mathcal{G}_3 &= \{C_r^{u_1}(T_1) | 3 \leq r \leq 5,\,l_1=n-r\}. \end{split}$$

By the transfer operation *A*, we know that

(i) the largest value of zeroth-order general Randić indices of the unicycle graphs in \mathcal{G}_1 is not more than the third largest value of zeroth-order general Randić indices of all unicycle graphs for $\alpha > 1$ or $\alpha < 0$, and the smallest value of zeroth-order general Randić indices of the unicycle graphs in \mathcal{G}_1 is not less than the third smallest value of zeroth-order general Randić indices of all unicycle graphs for $0 < \alpha < 1$;

(ii) the largest value of zeroth-order general Randić indices of the unicycle graphs in \mathcal{G}_2 is not more than the second largest value of zeroth-order general Randić indices of all unicycle graphs for $\alpha > 1$ or $\alpha < 0$,

and the smallest value of zeroth-order general Randić indices of the unicycle graphs in \mathcal{G}_2 is not less than the second smallest value of zeroth-order general Randić indices of all unicycle graphs for $0 < \alpha < 1$.

Therefore, in order to find the unicycle graph with the second and the third largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$), we only need to find

(i) the unicycle graph with the largest (smallest) zeroth-order general Randić index in \mathcal{G}_1 for $\alpha > 1$ or $\alpha < 0$ (0 < $\alpha < 1$); and

(ii) the unicycle graphs with the first two largest (smallest) zerothorder general Randić index in \mathcal{G}_2 for $\alpha > 1$ or $\alpha < 0$ (0 < $\alpha < 1$); and

(iii) the unicycle graph with the first three largest (smallest) zerothorder general Randić index in \mathcal{G}_3 for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) and, then compare them in turn.

From the transfer operation A, it is immediate that

Lemma 2.5. (i) The unicycle graph in \mathcal{G}_1 with the largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is $G_1 = C_3^{u_1, u_2, u_3}(S_2, S_2, S_{n-4}).$

(ii) The unicycle graph in \mathcal{G}_2 with the largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is $G_{10} = C_3^{u_1, u_2}(S_2, S_{n-3})$.

(iii) The unicycle graph in \mathcal{G}_3 with the largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is $G_2 = C_3(S_{n-2})$, it is also the unicycle graph with the largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) among all unicycle graphs of order n. **Lemma 2.6.** The unicycle graph \mathcal{G}_2 with the second largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is $G_{11} = C_3^{u_1, u_2}(S_3, S_{n-4}).$

Proof. Let
$$G = C_r^{u_1, u_2}(T_1, T_2) \in \mathcal{G}_2, 3 \le r \le 4, G \ne C_3^{u_1, u_2}$$
 $(S_2, S_{n-3}).$

Case 1. If r = 3, then $\{T_1, T_2\} \neq \{S_2, S_{n-3}\}$.

(1) $\{T_1, T_2\} = \{S_{l_1+1}, S_{l_2+1}\}$, where $l_1 \ge 2, l_2 \ge 2, l_1 + l_2 = n - 2$, and u_1, u_2 are the centers of T_1 and T_2 , respectively. By the transfer operation A, we have

(1) $R^{0}_{\alpha}(G) \leq R^{0}_{\alpha}(G_{11})$ for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^0_{\alpha}(G) \ge R^0_{\alpha}(G_{11})$$
 for $0 < \alpha < 1$,

where $G_{11} = C_3^{u_1, u_2}(S_3, S_{n-4})$, as shown in Figure 4.

(2) Otherwise, by the transfer operations A and B, we have

(i)
$$R^0_{\alpha}(G) \leq R^0_{\alpha}(G')$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^0_{\alpha}(G) \ge R^0_{\alpha}(G')$$
 for $0 < \alpha < 1$,

where $G' = G_{11}$ or G_{12} , as shown in Figure 4.

Case 2. If r = 4, then by the transfer operations A and B, we have

(i)
$$R^0_{\alpha}(G) \leq R^0_{\alpha}(G')$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^{0}_{\alpha}(G) \ge R^{0}_{\alpha}(G')$$
 for $0 < \alpha < 1$,

where $G' = G_{13}$ or G_{14} , as shown in Figure 4. Continuing the transfer operation *C*, we have

(i)
$$R^{0}_{\alpha}(G') \leq R^{0}_{\alpha}(G_{11})$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^0_{\alpha}(G') \ge R^0_{\alpha}(G_{11})$$
 for $0 < \alpha < 1$.

Finally, comparing the zeroth-order general Randić indices of G_{11} , and G_{12} we have

The proof of Lemma 2.6 is completed.

Similarly, the unicycle graph in \mathcal{G}_3 with the second largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is G_3 and G_7 . The unicycle graph in \mathcal{G}_3 with the third largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is one of G_4 , G_5 and G_6 . Comparing the zeroth-order general Randić indices of G_4 , G_5 and G_6 , we have

Lemma 2.7. (i) The unicycle graph in \mathcal{G}_3 with the second largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$ is G_3 or G_7 ;

(ii) The unicycle graph in $\,{\cal G}_{_3}\,$ with the third largest (smallest) zeroth-

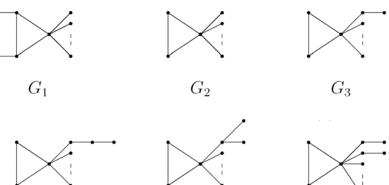
order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is G_5 .

Comparing the zeroth-order general Randić indices of G_3 , G_7 , G_1 , G_{10} and G_{11} , we have

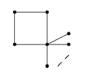
Theorem 2.8. *Among all unicycle graphs of order n,*

(i) The unicycle graph with the second largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is G_{10} ;

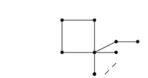
(ii) The unicycle graph with the third largest (smallest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) is G_3 or G_7 .

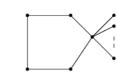


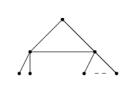
 G_5



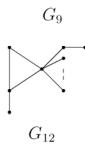
 G_4

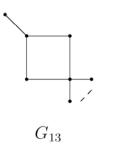






 G_8





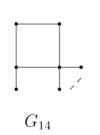


Figure 4.

3. The Unicycle Graphs with the First Three Smallest (Largest) Values of Zeroth-Order Randić Index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$)

For convenience, we introduce some new transfer operations.

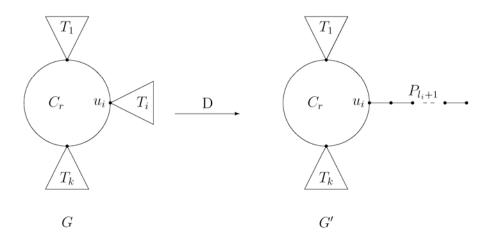


Figure 5. Transfer operation D.

Transfer operation D. Let $G = C_r^{u_1, u_2, \dots, u_k}(T_1, \dots, T_i, \dots, T_k)$, $k \ge 1$. If T_i is not a path, or T_i is a path and u_i is not the end-vertex of the path, then G can be changed into $G' = C_r^{u_1, \dots, u_i, \dots, u_k}(T_1, \dots, P_{l_i+1}, \dots, T_k)$ after the transfer operation D, where $l_i + 1 = n(T_i)$ and u_i is the end-vertex of P_{l_i+1} , as shown in Figure 5.

Lemma 3.1. For the two graphs G and G' above, we have

(i) R⁰_α(G') < R⁰_α(G) for α > 1 or α < 0;
(ii) R⁰_α(G') > R⁰_α(G) for 0 < α < 1.

Proof. By the definition of $R^0_{\alpha}(G)$, we have

$$\begin{split} \Delta &= R^{0}_{\alpha}(G) - R^{0}_{\alpha}(G') \\ &= R^{0}_{\alpha}(T_{i}) - R^{0}_{\alpha}(P_{l_{i}+1}) + \left[(p+2)^{\alpha} - 3^{\alpha} \right] - \left[p^{\alpha} - 1^{\alpha} \right] \end{split}$$

$$\begin{split} &= R^{0}_{\alpha}(T_{i}) - R^{0}_{\alpha}(P_{l_{i}+1}) + \left[(p+2)^{\alpha} - p^{\alpha}\right] - \left[3^{\alpha} - 1^{\alpha}\right] \\ &= R^{0}_{\alpha}(T_{i}) - R^{0}_{\alpha}(P_{l_{i}+1}) + 2\alpha(\xi^{\alpha-1} - \eta^{\alpha-1}), \end{split}$$

where $\xi \in (p, p+2), \eta \in (1, 3)$ (or $\xi \in (3, p+2), \eta \in (1, p)$).

Let
$$\Delta_1 = f(T_i) - f(P_{l_i+1}), \Delta_2 = \alpha(\xi^{\alpha-1} - \eta^{\alpha-1}).$$

If $\alpha > 1$ or $\alpha < 0$, then $\Delta_2 \ge 0$; and $\Delta_1 \ge 0$ from [9]. And at least one of the equalities strictly holds. So, $\Delta > 0$.

If $0 < \alpha < 1$, then $\Delta_2 < 0$; and $\Delta_1 < 0$ from [9]. And at least one of the inequalities strictly holds. So, $\Delta < 0$.

The proof of Lemma 3.1 is completed.

Remark. Repeating the operations D, any unicycle graph

G = $C_r^{u_1,\,u_2,\,\cdots,\,\,u_k}(T_1,\,T_2,\,\cdots,\,T_k\,)$ can be changed into

$$C_r^{u_1,\,u_2,\,\cdots,\,u_k}\big(P_{l_1+1},\,P_{l_2+1},\,\cdots,\,P_{l_k+1}\big).$$

For any unicycle graph $G = C_r^{u_1, u_2, \cdots, u_k}(T_1, T_2, \cdots, T_k)$, we can see from Lemma 3.1 that

(i)
$$R^{0}_{\alpha}(G) \ge R^{0}_{\alpha}(C^{u_{1}, u_{2}, \dots, u_{k}}_{r}(P_{l_{1}+1}, P_{l_{2}+1}, \dots, P_{l_{k}+1}))$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^0_{\alpha}(G) \leq R^0_{\alpha}(C_r^{u_1, u_2, \cdots, u_k}(P_{l_1+1}, P_{l_2+1}, \cdots, P_{l_k+1}))$$
 for $0 < \alpha < 1$.

And the equality holds if and only if

$$G = C_r^{u_1, u_2, \cdots, u_k} (P_{l_1+1}, P_{l_2+1}, \cdots, P_{l_k+1}).$$

Transfer operation F. Let $G = C_r^{u_1, u_2, \dots, u_k}(P_{l_1+1}, P_{l_2+1}, \dots, P_{l_k+1})$. If k > 1, then G can be changed into

$$G' = C_r^{u_1, \dots, u_{k-1}}(P_{l_1+1}, P_{l_2+1}, \dots, P_{l_{k-1}+l_k+1}).$$

209

Lemma 3.2. For the two graphs G and G' above, we have

(i)
$$R^{0}_{\alpha}(G') < R^{0}_{\alpha}(G)$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^0_{\alpha}(G') > R^0_{\alpha}(G)$$
 for $0 < \alpha < 1$.

Proof. By the definition of $R^0_{\alpha}(G)$, we have

$$\begin{split} \Delta &= R^0_\alpha(G') - R^0_\alpha(G) \\ &= \left[2^\alpha + 2^\alpha \right] - \left[3^\alpha + 1^\alpha \right] \\ &= \left[2^\alpha - 1^\alpha \right] - \left[3^\alpha - 2^\alpha \right] \\ &= \alpha(\xi^{\alpha - 1} - \eta^{\alpha - 1}), \end{split}$$

where $\xi \in (1, 2)$, $\eta \in (2, 3)$. And $\xi < \eta$, $\Delta < 0$ for $\alpha > 1$ or $\alpha < 0$, $\Delta > 0$ for $0 < \alpha < 1$. The proof of Lemma 3.2 is completed.

Remark. Repeating the operation F, any unicycle graph $G = C_r^{u_1, u_2, \dots, u_k}(P_{l_1+1}, P_{l_2+1}, \dots, P_{l_k+1})$ can be changed into $C_r^{u_1}(P_{n-r+1})$, as shown in Figure 6.

Therefore, any unicycle graph $G = C_r^{u_1, u_2, \cdots, u_k}(T_1, T_2, \cdots, T_k)$ can be changed into $C_r^{u_1}(P_{n-r+1})$ after the operations D and F.

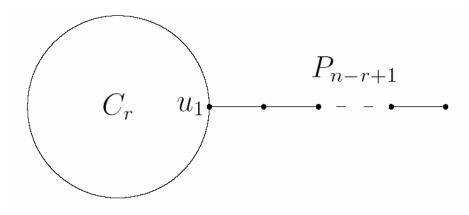


Figure 6. $C_r^{u_1}(P_{n-r+1})$.

Lemma 3.3. *If* $3 \le r < n$, *then*

(i)
$$R^{0}_{\alpha}(C^{u_{1}}_{r}(P_{n-r+1})) > R^{0}_{\alpha}(C_{n})$$
 for $\alpha > 1$ or $\alpha < 0$;
(ii) $R^{0}_{\alpha}(C^{u_{1}}_{r}(P_{n-r+1})) < R^{0}_{\alpha}(C_{n})$ for $0 < \alpha < 1$.

Proof. If $3 \le r < n$, then the degree sequence of $C_r^{u_1}(P_{n-r+1})$ is [1, 2, \cdots , 2 \cdots , 3]. The degree sequence of C_n is [2, 2, \cdots , 2 \cdots , 2]. By the definition of $R_{\alpha}^0(G)$, we have

$$\begin{split} \Delta &= R^{0}_{\alpha}(C^{u_{1}}_{r}(P_{n-r+1})) - R^{0}_{\alpha}(C_{n}) \\ &= \left[1^{\alpha} + 3^{\alpha}\right] - \left[2^{\alpha} + 2^{\alpha}\right] \\ &= \left[3^{\alpha} - 2^{\alpha}\right] - \left[2^{\alpha} - 1^{\alpha}\right] \\ &= \alpha(\xi^{\alpha-1} - \eta^{\alpha-1}), \end{split}$$

where $\xi \in (2, 3)$, $\eta \in (1, 2)$. And $\Delta > 0$ for $\alpha > 1$ or $\alpha < 0$, $\Delta < 0$ for $0 < \alpha < 1$. The proof of Lemma 3.3 is completed.

From Lemmas 3.1 and 3.2, the following result is immediate.

Theorem 3.4. Among all unicycle graphs,

(i) C_n is the unique unicycle graph with the smallest (largest) zerothorder general Randić index for $\alpha > 1$ or $\alpha < 0$ (0 < $\alpha < 1$);

(ii) the unicycle graphs with the second smallest (largest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) are $C_r^{u_1}(P_{n-r+1}), 3 \le r \le n-1$, their degree sequences are $[1, 2, \dots, 2\dots, 3]$.

In the following, we consider the unicycle graph with third smallest (largest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$.

Let

$$\mathcal{F}_1 = \{ C_r^{u_1, u_2}(P_{l_1+1}, P_{l_2+1}) | l_1, l_2 \ge 1, l_1 + l_2 = n - r, r \ge 3 \}$$
$$\mathcal{F}_2 = \{ C_r^{u_1}(T_1) | 3 \le r \le n - 1 \}.$$

For any unicycle $G = C_r^{u_1, u_2, \dots, u_k}(T_1, \dots, T_i, \dots, T_k)$, if $k \ge 3$, then by the operations D and F, there is $G' \in \mathcal{F}_1$ such that

- (i) $R^0_{\alpha}(G) > R^0_{\alpha}(G')$ for $\alpha > 1$ or $\alpha < 0$;
- (ii) $R^0_{\alpha}(G) < R^0_{\alpha}(G')$ for $0 < \alpha < 1$.

Similarly, for any unicycle graph $G \in \mathcal{F}_1$, there is $G' \in \mathcal{F}_2$ such that

(i)
$$R^0_{\alpha}(G) > R^0_{\alpha}(G')$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^0_{\alpha}(G) < R^0_{\alpha}(G')$$
 for $0 < \alpha < 1$.

Therefore, the smallest value of zeroth-order general Randić indices of the unicycle graphs in \mathcal{F}_1 is not less than the third smallest value of zeroth-order general Randić indices of all unicycle graphs for $\alpha > 1$ or $\alpha < 0$; and the largest value of zeroth-order general Randić indices of the unicycle graphs in \mathcal{F}_1 is not more than the third largest value of zerothorder general Randić indices of all unicycle graphs for $0 < \alpha < 1$.

In order to find the unicycle graph with the third smallest (largest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$), we only need to find

(i) the unicycle graph with the smallest (largest) zeroth-order general Randić index in \mathcal{F}_1 for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$); and

(ii) the unicycle graphs with the second smallest (largest) zerothorder general Randić index in \mathcal{F}_2 for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) and, then compare them in turn.

Note that the degree sequences of graphs in \mathcal{F}_1 are $[1, 1, 2, \dots, 2, 3, 3]$, and their zeroth-order general Randić indices are the same value:

$$R^{0}_{\alpha}(G) = 2 + 2^{\alpha}(n-4) + 2 \cdot 3^{\alpha}.$$

So, we only need to find the unicycle graphs with the second smallest (largest) zeroth-order general Randić index in \mathcal{F}_2 for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$.

Let $D(G) = [d_1, d_2, \dots, d_n]$ be the degree sequence of unicycle graph G with order n, where $d_i \ge d_j + 2$. G' is obtained by replacing (d_i, d_j) with $(d_i - 1, d_j + 1)$ in D(G), i.e.,

$$D(G') = [d_1, \dots, d_{i-1}, d_i - 1, d_{i+1}, \dots, d_{j-1}, d_j + 1, d_{j+1}, \dots, d_n].$$

Lemma 3.4 ([9]). For the two graphs G and G' above, we have

(i)
$$R^{0}_{\alpha}(G) > R^{0}_{\alpha}(G')$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^{0}_{\alpha}(G) < R^{0}_{\alpha}(G')$$
 for $0 < \alpha < 1$

Lemma 3.5. The graphs in \mathcal{F}_2 with the degree sequence $D(G) = [1, 1, 2, \dots, 2, 3, 3]$ are the unicycle graphs with the second smallest (largest) zeroth-order general Randić index in \mathcal{F}_2 for $\alpha > 1$ or $\alpha < 0$ $(0 < \alpha < 1)$.

Proof. Let $G = C_r^{u_1}(T_1)$ be the unicycle graph in \mathcal{F}_2 with the second smallest (largest) for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$). Since $r \le n - 1$, G must have at least one vertex with degree more than 2.

If \mathcal{F}_0 is the unicycle graph with the smallest (largest) zeroth-order general Randić index in \mathcal{F}_2 for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$), then, by Theorem 3.1, the degree sequence of \mathcal{F}_0 is $[1, 2, \dots, 2, 3]$.

Therefore, G must have at least two vertices with degree more than 2.

If the degree sequence of G is not $[1, 1, 2, \dots, 2, 3, 3]$, then, by Lemma 3.4, there is an unicycle graph $G' \in \mathcal{F}_2$ such that $D(G') = [1, 1, 2, \dots, 2, 3, 3]$, and

(i)
$$R^0_{\alpha}(G) > R^0_{\alpha}(G') > R^0_{\alpha}(\mathcal{F}_0)$$
 for $\alpha > 1$ or $\alpha < 0$;

(ii)
$$R^{0}_{\alpha}(G) < R^{0}_{\alpha}(G') < R^{0}_{\alpha}(\mathcal{F}_{0})$$
 for $0 < \alpha < 1$.

This contradicts that *G* is the unicycle graph in \mathcal{F}_2 with the second smallest (largest) for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$). So, the degree sequence of *G* is $D(G) = [1, 1, 2, \dots, 2, 3, 3]$.

Since the degree sequence of the graph in \mathcal{F}_1 is $[1, 1, 2, \dots, 2, 3, 3]$, combining Lemma 3.5 and the above, we have

Theorem 3.2. Among all the unicycle graphs of order n, the unicycle graphs with the third smallest (largest) zeroth-order general Randić index for $\alpha > 1$ or $\alpha < 0$ ($0 < \alpha < 1$) are the graphs whose degree sequences are [1, 1, 2, ..., 2, 3, 3].

Acknowledgement

This work was partially supported by the Research fund of Huaiyin Institute of Technology (HGQ 0726).

References

- O. Araujo and J. Rada, Randić index and lexicographic order, J. Math. Chem. 27 (2000), 19-30.
- [2] E. Esrrada, Generalization of topological indices, Chem. Phs. Lett. 336 (2001), 248-252.
- [3] M. Fishermann, I. Gutman, A. Hoffmann, D. Rautenbach, D. Vidoić and L. Volkmann, Extremal chemical trees, Z. Naturforsch 57(a) (2002), 49-52.
- [4] I. Gutman and O. Miljković, Connectivity indices, Chem. Phs. Lett. 306 (1999), 366-372.
- [5] P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs 6: analyzing bounds for the connectivity index, J. Chem. Inf. Comput. Sci. 43 (2003), 1-14.
- [6] Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with smallest and greatest zeroth-order genenal Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005), 425-434.
- [7] H. Hua and H. Deng, On unicycle graphs with maximum and minimum zeroth-order general Randić index, Accepted by J. Math. Chem.

HONGZHUAN WANG et al.

- [8] L. B. Kier and L. Hall, Molecular Connectivity in Structure Activity Analysis, Research Studies Press, Wiley, Chichester, UK, 1986.
- [9] X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 51 (2004), 205-210.
- [10] X. Li and J. Zheng, An unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 195-208.
- [11] L. Pavlovič, Maximal value of the zeroth-order Randić index, Discrete Applied Mathematics 127 (2003), 615-626.
- [12] M. Randić, On the characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609-6615.
- [13] M. Randić, On structural ordering and branching of acyclic saturated hydrocarbons, J. Math. Chem. 24 (1998), 345-358.
- [14] N. Trinajstic, Chemical Graph Theory, CRC press, 1992.
- [15] H. Wang and H. Deng, Unicycle graphs with maximum generalized topological indices, Accepted by J. Math. Chem.

214